Copper and Copper Alloys EN Standards for Copper Alloys

This datasheet provides an outline of the large number of extensive EN Standards covering Copper and Copper Alloys.

Other datasheets on this Aalco web site do provide further information on individual alloys including compositions and Mechanicla Properties.

An excellent further reference providing much more detail on Alloy Compositions, Mechanical Properties, etc. - Publication 120 - in available from the Copper Development Association: www.cda.org.uk

For information on Product Tolerances please refer to the latest edition of the published EN Standard.

EN STANDARDS FOR COPPER ALLOYS

This table lists relevant EN Standards and the nearest equivalent old BS Standard

Product Form	EN Standard	Old BS Standard
Free Machining Rod	12164 2874	
Plate	1652, 1653	2875 Pt 3
Sheet, Strip & Foil	1172, 1652, 1653, 1654 2870	
Tube - Water, Gas, Sanitation	1057 2871 Pt 1	
Tube - General Purpose	12449 2871 Pt 2	
Tube - Heat Exchangers	12451 2871 Pt 3	
Copper Rod & Bar - Electrical Uses	13601 1433	
High Conductivity Copper (Oxygen Free)	13604 2901	

EN ALLOYS NUMBERING SYSTEM

The system uses 6 characters.

The first character is a C for Copper-based alloys.

The second character is a letter from the table below.

The third, fourth and fifth characters comprise a 3-digit number, which with a sixth character (a letter) indicate the alloy group. These number series and corresponding letters are also shown in the table below.

An example is CW614N.

Character/Digits	Key	
В	Ingot for re-melting to produce cast products	
С	Cast Products	
F	Filler Materials for Brazing and Welding	
М	Master Alloys	
R	Refined Unwrought Copper	
S	Scrap	
W	Wrought Products	
×	Non-Standardised Materials	
000 to 099 A or B	Pure Copper	
100 to 199 C or D	Copper Alloys with less than 5% added elements	
200 to 299 E or F	Miscellaneous Copper Alloys with more than 5% added elements	
300 to 349 G	Copper-Aluminium Alloys	
350-399 Н	Copper-Nickel Alloys (Cupro-Nickel)	
400 to 449 J	Copper-Nickel-Zinc Alloys	
450 to 499 K	Copper-Tin Alloys	
500 to 599 L or M	Copper-Zinc Alloys - Binary	
600 to 699 N or P	Copper-Zind-Lead Alloys	
700 to 799 R or S	Copper-Zinc Alloys - Complex	

CONVERTING OLD BS ALLOY TO EN ALLOY

Old BS Alloy	EN Alloy	Notes	
C101	CR004A		
C104	CR008A		
C106	CR024A		
CZ106	CW505L		
CZ108	CW508L		
CZ112	CW712R	Naval Brass	
CZ114	CW721R & CW722R	High Tensile Brass / Manganese Bronze	
CZ121	CW614N	Free Machining Brass	
CZ130	CW624N		
CZ131	CW606N	Riveting Quality Brass	
CA104	CW307G Aluminium Bronze		
PB102	CW451K	Phosphor Bronze	

DIAMETER TOLERANCES - FREE MACHINING ROD

These tolerances are extracted from EN 12164: 2011 (E).

For full detail please refer to the complete standard.

Diameter (MM)	Tolerance (mm) - Class A
Over 2.0 to 3.0	-0 / +0.04
Over 3.0 to 6.0	+0 / -0.05
Over 6.0 to 10.0	+0 / -0.06
Over 10.0 to 18.0	+0 / -0.07
Over 18.0 to 30.0	+0 / -0.08
Over 30.0 to 50.0	+0 / -0.16
Over 50.0 to 80.0	+0 / -0.19

WIDTH ACROSS FLATS TOLERANCE - FREE MACHINING HEX

These tolerances are extracted from EN 12164: 2011 (E).

For full detail please refer to the complete standard.

Width Across Flats (mm)	Tolerance (mm)
Over 2.0 to 3.0	+0 / -0.06
Over 3.0 to 6.0	+0 / -0.08
Over 6.0 to 10.0	+0 / -0.09
Over 10.0 to 18.0	+0 / -0.11
Over 18.0 to 30.0	+0 / -0.13
Over 30.0 to 50.0	+0 / -16
Over 50.0 to 60.0	+0 / -0.19

THICKNESS TOLERANCES - HOT ROLLED PLATE

These tolerances are extracted from EN 1652: 1997.

They apply to plates of width 1000mm to 1500mm only.

Note that wider tolerances apply for some alloys, including CW702R $\,$

For full detail please refer to the complete standard.

Thickness (mm)	Tolerance in mm Plus or Minus (+ or -)	
Up to 2.5	By Agreement	
Over 2.5 to 5.0	0.35	
Over 5.0 to 7.5	0.45	
Over 7.5 to 10.0	0.55	
Over 10.0 to 15.0	0.90	
Over 15.0 to 25.0	1.30	
Over 25.0 to 50.0	1.50	
Over 50.0	1.80	

Copper and Copper Alloys EN Standards for Copper Alloys

THICKNESS TOLERANCES - COLD ROLLED SHEET & STRIP

These tolerances are extracted from EN 1652: 1997.

They apply to sheets of width 1000mm to 1250mm only.

Note that wider tolerances (multiply those below by 1.250) apply for some alloys, including CW702R.

For full detail please refer to the complete standard.

Thickness (mm)	Tolerance in mm Plus or Minus (+ or -)
Over 0.3 to 0.4	0.07
Over 0.4 to 0.5	0.08
Over 0.5 to 0.8	0.09
Over 0.8 to 1.2	0.10
Over 1.2 to 1.8	0.11
Over 1.8 to 2.5	0.13
Over 2.5 to 3.2	0.17
Over 3.2 to 4.0	0.20
Over 4.0 to 5.0	0.23
Over 5.0 to 6.0	0.26
Over 6.0 to 7.0	0.29
Over 7.0 to 8.0	0.32
Over 8.0 to 9.0	0.35
Over 9.0 to 10.0	0.38

DIAMETER TOLERANCES - GENERAL PURPOSE TUBE

These tolerances are extracted from EN 12449: 1999.

Tolerances shown are in mm plus or minus (+ or -)

Tolerances in column 2 are applicable to the mean diameter.

Tolerances in column 3 are applicable to any diameter and have a number of exclusions including colied tubes and annealed tubes.

For full detail please refer to the complete standard.

O/D (mm)		Tol + or - on mean diameter
Over 3.0 to 10.0	0.06	0.12
Over 10.0 to 20.0	0.08	0.16
Over 20.0 to 30.0	0.12	0.24
Over 30.0 to 50.0	0.15	0.30
Over 50.0 to 100.0	0.20	0.50
Over 100.0 to 200.0	0.50	1.0
Over 200.0 to 300.0	0.75	1.5
Over 300.0 to 450.0	1.0	2.0

Copper and Copper Alloys **EN Standards for Copper Alloys**

WALL THICKNESS TOLERANCES - GENERAL **PURRPOSE TUBE**

These tolerances are extracted from EN 12449: 1999.

In the header of columns 2 to 6: t is the nominal wall thickness in mm. In the rest of columns 2 to 6 is the tolerance plus or minus (+ or -) in mm.

For full detail please refer to the complete standard.

O/D (mm)	t 0.3 to 1.0	t 1.01 to 3.0	t 3.01 to 6.0	t 6.01 to 10.0	t Over 10.0
3 to 40.0	15	13	11	10	-
40.01 to 120	15	13	12	11	10
120.1 to 250	-	13	13	12	11
250.1 to 450	-	-	15	15	15

DIAMETER TOLERANCES - HEAT EXCHANGER **TUBE**

These tolerances are extracted from EN 12451: 1999.

For full detail please refer to the complete standard.

O/D (mm)	Tolerance in mm
6.0 to 14.0	+0 / -0.12
Over 14.0 to 26	+0 / -0.20
Over 26.0 to 76.0	+0 / -0.30

CONTACT

Please make contact directly with your local service centre, which can be found via the Address:

Locations page of our web site

Web: www.aalco.co.uk

REVISION HISTORY

Datasheet Updated 18 July 2019

DISCLAIMER

This Data is indicative only and as such is not to be relied upon in place of the full specification. In particular, mechanical property requirements vary widely with temper, product and product dimensions. All information is based on our present knowledge and is given in good faith. No liability will be accepted by the Company in respect of any action taken by any third party in reliance thereon.

Please note that the 'Datasheet Update' date shown above is no guarantee of accuracy or whether the datasheet is up to date.

The information provided in this datasheet has been drawn from various recognised sources, including EN Standards, recognised industry references (printed & online) and manufacturers' data. No guarantee is given that the information is from the latest issue of those sources or about the accuracy of those sources.

Material supplied by the Company may vary significantly from this data, but will conform to all relevant and applicable standards.

As the products detailed may be used for a wide variety of purposes and as the Company has no control over their use; the Company specifically excludes all conditions or warranties expressed or implied by statute or otherwise as to dimensions, properties and/or fitness for any particular $\ensuremath{\mathsf{I}}$ purpose, whether expressed or implied.

Advice given by the Company to any third party is given for that party's assistance only and without liability on the part of the Company. All transactions are subject to the Company's current Conditions of Sale. The extent of the Company's liabilities to any customer is clearly set out in those Conditions; a copy of which is available on request.

[4 OF 4]